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Abstract: Coding deliverables are vital part of the software project. Teams are formed to develop a
software project in a term. The performance of the team for each milestone results in the success or
failure of the project. Coding intricacy is a major issue faced by students as coding is believed to be a
complex field demanding skill and practice. Future education demands a smart environment for
understanding students. Prediction of the coding intricacy level in teams can assist in cultivating a
cooperative educational environment for sustainable education. This study proposed a boosting-based
approach of a random forest (RF) algorithm of machine learning (ML) for predicting the coding
intricacy level among software engineering teams. The performance of the proposed approach
is compared with viable ML algorithms to evaluate its excellence. Results revealed promising
results for the prediction of coding intricacy by boosting the RF algorithm as compared to bagging,
J48, sequential minimal optimization (SMO), multilayer perceptron (MLP), and Naïve Bayes (NB).
Logistic regression-based boosting (LogitBoost) and adaptive boosting (AdaBoost) are outperforming
with 85.14% accuracy of prediction. The concerns leading towards high coding intricacy level can be
resolved by discussing with peers and instructors. The proposed approach can ensure a responsible
attitude among software engineering teams and drive towards fulfilling the goals of education for
sustainable development by optimizing the learning environment.

Keywords: sustainable education; educational data mining; software engineering; machine learning;
predictive modeling; boosting; ensembles

1. Introduction

Education for sustainable development (ESD) is allied with the qualified performance of all the
pupils in the academic group and awareness of the responsibility of their learning [1]. Understanding
and solving the snags and complications in the academic context are important aspects of achieving
ESD. Therefore, ESD is fundamental in providing quality education. Learning outcomes are specially
addressed concerns in ESD. Stimulating learning, endorsing critical thinking, and decision making
are the fundamental extents of ESD [2]. Predictive modeling through machine learning (ML) and
artificial intelligence (AI) is proved to be an effective resource in previous studies for accomplishing
the aims of ESD [3]. Technological involvement in academia is taking educational practices to a whole
new and improved level [4]. The concept of technology-enhanced learning (TEL) is about enhancing
the upshots of learning and teaching by incorporating technological facilities. It has rehabilitated the
traditional educational system and provided innovation in the educational domain [5].

Software engineering education is among the competitive educational fields. Software engineering
involves attaining knowledge of the software process, theoretical concepts of software engineering,
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and coding in the programming language. Coding is a complex process for students requiring lots
of skills and practice. Difficulties in coding can impact a student’s achievements and interests [6].
Coding deliverables are important components of the software project of the term. Student teams
spend a considerable amount of time on their project for producing the coding deliverables along
with achieving other milestones. Coding deliverables, therefore, are considered a significant standard
for determining the overall performance of the team in the software project. Strict deadlines are
associated with the accomplishment of a successful project. Therefore, time is an important resource
of the software team [7]. It is necessary to utilize time effectively to achieve goals. A large number
of projects face time overrun in the software industry [8]. Time management should be part of the
training of software engineers. Software projects are designed in a software engineering course to train
the students for the professional environment. However, coding intricacy is among the major problems
faced by software engineering students that cause delayed projects. Predicting teams with a high level
of coding intricacy during software project development can help in resolving the difficulties of the
teams. Predictions can result in achieving co-operative learning among teams and instructors to make
the academic environment lead to better learning. Support by peers can result in cooperative learning
rather than pressurized learning. This research proposed a cooperative learning-based environment
among software teams by predicting the coding intricacy level. On identification of teams having
higher intricacy levels, instructors should also guide them about the concerns leading towards delays
in producing coding deliverables.

ML has been anchored in the educational field in the form of educational data mining (EDM) [9].
This domain is further flourishing by adding in the ESD [10,11]. Algorithms of ML have been used
to solve problems of education and data analysis. Educational data from e-learning systems are
providing foundations for novel strategies of EDM. Data are readily available from the logs of e-learning
systems. An e-learning system provides the capability to inevitably detect the learner’s style of learning.
This helps in the personalization of the learning system. Classification practices are mostly used to
classify the learners according to their learning habits on the e-learning system. This has resulted in the
formulation of several classification-based approaches for different styles of learning behaviors [12].

Several studies offer the ML-based methodologies for predicting difficulties in massive open
online courses (MOOCs) [13–15], drop out of students from the e-learning system [16–18], and the
engagement level of the students [19–22]. However, incorporating ML in project-based educational
data is still an attention-demanding field. Predictive modeling on software engineering project data
can lead to the attainment of ESD for software engineering.

This study focuses on ensuring cooperative learning and achieving sustainable education by
predicting the high coding intricacy level among teams. The study leads to the development of
an efficacious algorithm for the prediction of coding intricacy levels among software engineering
teams through ML. The data set used for the research purpose was software engineering teamwork
assessment and prediction (SETAP) product data [23]. It encompasses data of 74 teams residing locally
or globally and working on the same software project. Assessment criteria for each team are defined
in the form of team activity measures. These measures assess each team at different milestones and
generate the performance grade accordingly. The data set distinguishes between software process data
and software product data. Software product data were used for this study. Coding deliverables are
one of the measures that determine the time in which the team produces the respective code. The time
varies for each team. Prediction of teams facing higher coding intricacy levels can help in achieving
better results of the software project. Exploring the reasons for the higher level of coding intricacy and
resolving the concerns can aid in achieving ESD and co-operative learning. Predictive modeling can
help in better decision-making strategies for the future. Waikato Environment for Knowledge Analysis
(Weka) was developed at the University of Waikato, New Zealand. Weka v3.8. was used to apply ML
algorithms for the prediction of teams facing high coding intricacy level.
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1.1. Research Questions

This study intends to answer the following research questions:

(1) Can we predict the coding intricacy level efficiently among software teams working on the same
software project?

(2) Can cooperative learning and ESD be achieved by predicting the high coding intricacy level
among teams?

The structure of the paper is as follows. Section 2 presents an outline of related works and studies
on the explicit topic. Section 3 defines and describes the proposed model for predicting coding intricacy.
Section 4 delivers the results and evaluates the performance of the proposed model. Section 5 presents
an exhaustive discussion, and Section 6 states the concluding thoughts and future recommendations.

2. Related Work

2.1. Difficulties in Learning Programming

Student behavior analysis is the foremost concern of EDM and learning analytics. It helps in
understanding learners and making decisions accordingly for their betterment. It is directly impacting
the goals of ESD as well. Coding difficulties for learners and their solution formulation carries
importance in academia. Students face difficulties in coding and automated tools can help in teaching
programming to students. Scratch and Alice are programming aiding tools. A positive impact on the
reflective and computational thinking of students by programming teaching through Scratch can be
achieved [24].

Team formulation and project-based learning for software engineering are quite effective.
Teamwork and leadership skills are important for a software engineer to accomplish intricate projects.
Authors of reference [25] made teams among software engineering students and evaluated their
abilities to cope with project-based learning. Role rotation is offered as a significant parameter for
project-based learning. This results in all the team members going through different types of challenges.
Algorithm education is a solution to coding intricacy. Algorithm education can pointedly upsurge the
student’s aptitude to perform simple and complex programming tasks. However, it is not shown to
raise their efficacy of computational thinking [26].

Students face substantial difficulties in learning programming. A questionnaire-based survey
explored the motives for the fragility behind new programming learners. Tool support is a great
way to overcome the hindrances in learning programming [27]. Programming-learning behavior
of the students can be evaluated using different means. Knowing the learning pattern can help the
instructor in the formulation of teaching style. Statical analysis tools can be used to analyze the pattern
of coding of the students. Error frequency in code is directly related to the overall course grade [28].
Incorporating ML for the prediction of students’ concerns is a leading research domain in academia.
Many studies offer novel methods and advantages of making student-related predictions. A learning
management system (LMS) can complement the face to face learning in the classroom. Data collected
from an LMS can predict a student’s performance through their login activity in the LMS [29].

An online judge system for programming students can help them to compile, execute, and evaluate
their code. This approach can aid in improving programming ability. The classification method is
used to identify students “at-risk”, by analyzing the log data of the online judge system. A deep
neural network is trained on the data to classify the students as risky, intermediate, and advanced.
This system proved its performance by correlating with the examination result [30].

2.2. Performance Prediction of Students in an E-Learning System

The performance of students in an e-learning system is of great interest for the researchers. In
this regard, different approaches are contributing by considering multiple parameters of student
behavior. Procrastination behavior can predict the performance of the students in an e-learning system.
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These behavioral statistics link the assignment submission behavior with the success factor in the
e-learning system. Clustering can predict the student’s performance based on procrastination behavior
with 96% accuracy [31].

Data analysis of students reveals imperative statistics of students that can help in perceiving
their relation with the academic responsibilities. The survey presented in reference [32] showed
how effectually different domains of AI, including ML, recommender systems, and collaborating
filtering, are contributing to the development of innovative procedures and practices for enhancing
student-academic relationships.

Students dropping out can be considered in terms of deteriorating the resources. It is central to
appraise the factors contributing to increased drop out of students. Deployment of ML algorithms is
helpful to explore the factors and potential students that are at risk of dropping out of the university.
Decision tree, logistic regression, random forest, K nearest neighbor, and neural network can be trained
for making predictions. Logistic regression is proved to be the superlative model for the case in
reference [33].

2.3. ML for Predicting Programming Learning

Authors of reference [34] defined the potential components for learning computer programming
as knowledge and proficiency. Student study performance is determined by applying the clustering
technique. An optimal set of features is identified for students using the best subset selection
and least absolute shrinkage and selection operator (LASSO) algorithm. The model is validated
using a linear regression model with an accuracy of 76.52% for knowledge and 70.44% for skills in
computer programming.

Reference [35] offered a deep learning recommendation system for programming. Students are
divided into two groups. A group of students used the deep learning recommendation system for
programming and the other one participated in the control group. Results declared the positive impact
of a deep-learning-based recommendation system on the programming structure of the students.
The two groups are evaluated according to computational thinking, creativity, logical computing, critical
thinking, and problem-solving skills. The students using a deep-learning-based recommendation
system performed better in the respective evaluations.

2.4. Potential Limitations in the Literature

The review of previous studies explains how ML has its influence on academics generally and for
resolving computer programming issues specifically. Different methodologies suggest procedures that
make coding easy for students. However, no technique is offered to determine the coding intricacy
level among software engineering teams. Approaches of EDM and ESD collectively offer an optimized
learning environment with quality education.

3. Materials and Methods

This section explains the materials and methods used to accomplish the anticipated objects of this
study. The input of the proposed system was SETAP software product data of phase T11. The output
of the approach is the best prediction of the coding intricacy level among software engineering teams.
Figure 1 illustrates the phases of the process involved in the prediction of coding intricacy level among
software engineering teams.

The proposed approach is composed of four phases as depicted in Figure 1:

(1) Data Preparation
(2) Prediction Phase
(3) Evaluation Phase
(4) Boosting Phase
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Figure 1. Proposed Approach for Prediction of Coding Intricacy Level among Software Engineering
Team. SETAP = software engineering teamwork assessment and prediction, LogitBoost = logistic
regression-based boosting, AdaBoost = adaptive boosting.

3.1. Data Preparation

SETAP data enter into the first phase called data preparation. SETAP is the data of software
engineering students for assessment of progress in the software project. Data preparation involves the
process of data cleaning, features aggregation, and data splitting.

3.1.1. Data Cleaning

NULL values and missing values are fixed in the original data. NULL values in SETAP data
are accommodated by filling the average values of the fields having NULL values. Some teams are
residing locally and others are global. If the values of local teams are stated as NULL for their global
variables, they are substituted by 0.

3.1.2. Features Aggregation

Time is among the major contributors to assess the performance in the software project.
codingDeliverablesHoursTotal, meetingHoursTotal, and helpHoursTotal are taken as predictors
to assess coding intricacy level. codingDeliverablesHoursTotal is the time taken to produce the
coding deliverables, meetingHoursTotal represents total time spent on meetings of the teams,
and helpHoursTotal is time utilized for getting help. These three variables are combined according to
the logic to form a new attribute: coding intricacy level. The value of coding intricacy level resides as
“High” or “Low” conferring to the fulfillment of the below-mentioned condition.

If (codingDeliverablesHoursTotal) > Total mean (codingDeliverablesHoursTotal)
and (meetingHoursTotal) > Total mean (meetingHoursTotal)

and (helpHoursTotal) > Total mean (helpHoursTotal) then (High) otherwise (Low)

Features selection eliminates the least contributing variable. Features aggregation in contrast
to features selection combines the available variables to form a new attribute. This method helps in
dimensionality reduction [36].

3.1.3. Data Splitting

Input data are split into training and test data. K-folds cross-validation is used for training and
validation of the model [37]. The model is trained on K-1 of individual folds and one fold is used to test
the model. K rounds of the execution result in generating the predictions from the model. Ten folds
cross-validation is used in the proposed approach for attaining reliable outcomes.
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3.2. Prediction Phase

Training and testing data are fed into the prediction phase. Random forest (RF) is trained on
the training data for making predictions of testing data through K-folds cross-validation. RF is a
supervised learning algorithm of machine learning made up of the ensemble of decision trees [38].
Being a merger of multiple decision trees, it is expected to generate reliable predictions for coding
intricacy levels. The RF takes a subdivision of random features from the data set for the building
individual trees. Hence, the output of RF deals with assortment and leads to the best predictions.

3.3. Evaluation Phase

The efficacy of RF for predicting the coding intricacy level is assessed against other ML algorithms
in the evaluation phase. Bagging, J48, sequential minimal optimization (SMO), multilayer perceptron
(MLP), and Naïve Bayes (NB) are well-known algorithms of ML. They have been used in multiple
studies for making predictions. Bagging is an ensemble classifier like RF that combines the output of
weak classifiers to enhance the output [39]. J48 belongs to the class of decision trees. It can extract
patterns from large and complex data sets. J48 is considered one of the efficient algorithms of data
mining [40]. SMO is used to train the support vector machine. It solves the quadratic programming
problems that arise during the training of the support vector machine [41]. MLP is the implementation
of artificial neural networks. MLP is trained by adjusting the number of nodes, hidden layers,
and weights for the classification of data. MLP has a huge contribution to the research [42]. NB is a
probabilistic classifier. It evaluates the features to make assumptions about independence between
them by applying Bayes theorem. The algorithm possesses a viable contribution to the field of data
mining [43].

Accuracy, receiver operating curve (ROC), Kappa, and root mean squared error (RMSE) values of
each model are computed to appraise against the proposed approach to demonstrate the performance
of the proposed RF-based model for prediction of coding intricacy level of the software engineering
team. ROC relates the true positive rate (sensitivity) with a false-positive rate (1-specificity) [44].

An ROC can be interpreted to depict the efficiency of the model as shown in Table 1.

Table 1. Interpretation of the Receiver Operating Curve (ROC).

ROC Area Interpretation

More than 0.9 Exceptional
From 0.9 to 0.8 Good
From 0.8 to 0.7 Acceptable
From 0.7 to 0.6 Reasonable
Less than 0.6 Poor

A Kappa value indicates how closely the machine learning algorithm predicts the labels to the
actual labels [45]. Kappa values can be interpreted using Table 2.

Table 2. Interpretation of Kappa Values for Machine Learning (ML) Model.

Kappa Value Interpretation

0.61–0.80 Considerable agreement between predicted and actual labels
0.41–0.60 Moderate agreement between predicted and actual labels
0.21–0.40 Fair agreement between predicted and actual labels
0.01–0.20 No to a slight agreement between predicted and actual labels
values ≤0 No agreement between predicted and actual labels

The study is focused on determining the software teams with a high level of coding intricacy for
the resolution of their concerns. Therefore, the performance of each model is determined by keeping an
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eye towards the identification of a “High” level class. F-measure, recall, and precision are determined
and evaluated for the high predicted class through each model.

3.4. Boosting Phase

Boosting is an ensemble-based approach used in ML to enhance the performance of the base
classifier [46]. RF is an ensemble of multiple decision trees, that aggregates the performance of each
random tree to generate the vindicated predictions. However, this study proposed a boosting-based RF
approach for predicting the coding intricacy level of software engineering teams. Adaptive boosting
(AdaBoost) and logistic regression-based boosting (LogitBoost) are recognized techniques to boost the
prediction capability of the base classifier. AdaBoost combines the output of weak learners to generate
boosted output. AdaBoost minimizes the exponential loss [47]. LogitBoost is similarly a boosting
classification algorithm. LogitBoost minimizes the logistic loss [48].

Both boosting algorithms are applied by taking RF as a base classifier to check whether boosting
increases the efficiency of the proposed RF model or not for predicting coding intricacy level.

4. Results

Prepared SETAP data were fed into the RF-based proposed model for predicting coding intricacy
level. Services of bagging, J48, SMO, MLP, and NB were utilized to observe the predictions compared
to the proposed approach. Table 3 depicts the performance metrics of each model from the perspective
of accuracy, RMSE, and Kappa statistics for engendering predictions after the evaluation phase.

Table 3. Performance Metrics of Models.

Model Accuracy RMSE Kappa

RF 82.43% 0.3430 0.5850
Bagging 82.43% 0.3541 0.5623

J48 78.38% 0.4584 0.5083
SMO 78.38% 0.4650 0.4686
MLP 72.97% 0.5023 0.3357
NB 72.97% 0.5059 0.4003

RMSE = root mean squared error, RF = random forest, sequential minimal optimization (SMO), multilayer perceptron
(MLP), Naïve Bayes (NB).

Results from Table 3 illustrate that the RF-based proposed model and bagging are performing
with the best accuracy of 82.43%. RF is an ensemble-based concept based on bagging the outputs
of multiple decision trees; therefore, results are quite similar. Kappa values are illustrating the best
predictions through the RF model. The boosting phase results in the application of LogitBoost and
AdaBoost by taking RF as a base classifier. Improved accuracy, reduction in RMSE, and improved
value of Kappa by boosting the RF can be observed in Table 4.

Table 4. Performance Evaluation of Model by Boosting.

Model Accuracy RMSE Kappa

LogitBoost 85.14% 0.3380 0.6395
AdaBoost 85.14% 0.3431 0.6297

RF 82.43% 0.3430 0.5850

Values for accuracy of LogitBoost–RF and AdaBoost–RF are the same. Figure 2 illustrates the
overall comparative evaluation of the accuracy of each model and boosted RF.
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The value of accuracy is portraying that boosting significantly aided the results. Further refinement
of the results is depicting greater Kappa value and reduced RMSE through the LogitBoost approach.
The higher the value of Kappa, the better the agreement between predicted and actual labels as
demonstrated in Table 2 (Section 3).

The goals of the study revolved specifically around the determination of teams having high
intricacy levels. Those teams need attention from the instructor and cooperation of peers to resolve the
concerns leading towards troubles causing a delay in producing coding deliverables. Results generated
through comparative measures are depicted through Pareto charts.

Pareto charts are composed of bar and line graphs [49]. The left vertical axis is a measure of the
parameter value precision, recall, or f-measure. The right vertical axis depicts the cumulative percentage
of the total value of the parameter. The horizontal axis represents the respective model. The Pareto
chart highlights the prominent algorithm for the corresponding evaluation. Results are promising by
boosting the RF. Both practices, LogitBoost and AdaBoost, enhanced the prediction capability of RF.
Pareto charts in Figures 3–5 enlighten the perception of precision, recall, and f-measure, respectively.
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Precision represents the ratio of true positive to the total identified instances predicted as high.
Figure 3 is illustrating that boosting approaches are leading with an increased value precision for
identifying the high coding intricacy level.

The recall represents the ratio between true positive and total actual high labels available in the
data set. Figure 4 depicts LogitBoost is leading with the highest recall value for the prediction of high
coding intricacy among software engineering teams.

F-measure evaluates the model’s accuracy on the test data. F-measure is the harmonic mean of
precision and recall for prediction of high coding intricacy. Figure 5 is declaring boosting approaches
as victors with the highest f-measure value. Overall applying boosting on RF proved to be an
outperforming strategy for prediction of coding intricacy levels of software engineering teams. Table 5
represents the ROC-based analysis measures for prediction of the high level of coding intricacy in
software engineering teams.
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Table 5. ROC-Based Analysis for Prediction of High level of Coding Intricacy.

Model True Positive Rate False Positive Rate ROC Area

LogitBoost 0.727 0.096 0.922
AdaBoost 0.682 0.077 0.920
Bagging 0.636 0.096 0.911

Random forest 0.727 0.135 0.920
J48 0.727 0.192 0.771

SMO 0.591 0.135 0.728
MLP 0.500 0.173 0.783
NB 0.682 0.250 0.828

The ROC area represents the area under the ROC curve. Interpretation of the ROC area according
to the proportions given in Table 1 of Section 3 demonstrates the exceptional performance of LogitBoost
among other competing algorithms. Therefore, boosting the RF provided a substantial boost to the
accuracy of predicted outcomes. Figure 6 illustrates an ROC curve to visualize the ROC area and
performance of all models.

Sustainability 2020, 12, x FOR PEER REVIEW 10 of 16 

Precision represents the ratio of true positive to the total identified instances predicted as high. 
Figure 3 is illustrating that boosting approaches are leading with an increased value precision for 
identifying the high coding intricacy level. 

The recall represents the ratio between true positive and total actual high labels available in the 
data set. Figure 4 depicts LogitBoost is leading with the highest recall value for the prediction of high 
coding intricacy among software engineering teams. 

F-measure evaluates the model’s accuracy on the test data. F-measure is the harmonic mean of 
precision and recall for prediction of high coding intricacy. Figure 5 is declaring boosting approaches 
as victors with the highest f-measure value. Overall applying boosting on RF proved to be an 
outperforming strategy for prediction of coding intricacy levels of software engineering teams. Table 
5 represents the ROC-based analysis measures for prediction of the high level of coding intricacy in 
software engineering teams. 

Table 5. ROC-Based Analysis for Prediction of High level of Coding Intricacy. 

Model True Positive Rate False Positive Rate ROC Area 
LogitBoost 0.727 0.096 0.922 
AdaBoost 0.682 0.077 0.920 
Bagging 0.636 0.096 0.911 

Random forest 0.727 0.135 0.920 
J48 0.727 0.192 0.771 

SMO 0.591 0.135 0.728 
MLP 0.500 0.173 0.783 
NB 0.682 0.250 0.828 

The ROC area represents the area under the ROC curve. Interpretation of the ROC area 
according to the proportions given in Table 1 of Section 3 demonstrates the exceptional performance 
of LogitBoost among other competing algorithms. Therefore, boosting the RF provided a substantial 
boost to the accuracy of predicted outcomes. Figure 6 illustrates an ROC curve to visualize the ROC 
area and performance of all models. 

 
Figure 6. ROC Curve of Models for Predicting High Level of Coding Intricacy. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

ROC Curve

AdaBoost

Bagging

J48

LogitBoost

MLP

NB

RF

SMO

Figure 6. ROC Curve of Models for Predicting High Level of Coding Intricacy.

The ROC curve is formed by relating the false positive rate to the true positive rate. Figure 6
represents the ROC curve for prediction of high coding intricacy level of software engineering teams.
The ROC area of LogitBoost is 0.922 and AdaBoost is 0.920.

Results revealed that the proposed approach of boosting the RF significantly increased the
capability of the model for predicting the coding intricacy level of the student. It is taking software
engineering from a project-oriented learning platform to a smart prediction-based environment for the
betterment of learners and instructors.
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5. Discussion

Predicting student coding behavior is a challenging and exciting problem. Educational predictions
and perceiving student capabilities are focused concerns of ESD for attaining a smart teaching and
learning environment. Online education on a learning management system gives the advantage
of perceiving a student’s caliber through clicks and streaming information [50]. A smart academic
environment is specifically concerned with the identification of alarming situations about students such
as dropping out issues, low-performance issues, or low engagement in the system [51]. Cooperative
learning is a mode of learning which supports learning from peers. Its basic idea revolves around
student groups in which students learn from each other [52]. The project-oriented study involves teams
having many students working together and learning from each other. Future education demands
a smart environment for project-based courses, as well, where teams are located globally or locally
for the project and ensuring cooperative learning. Software engineering teams are the best case of
observing such a course. A software project plays a key role in the successful completion of the course.
However, the collection of student data regarding the project is a foremost hurdle in such type of
courses, as data are not available from any log. Time to time assessment is required to observe students
constantly. The team activity measures express their participation in the project. SETAP is data of
software engineering students composed of detailed teams activity measures. The data set is quite
comprehensive and carries much-required information for performing research.

This study utilized a predictive modeling approach using ML to attain a smart environment for
software engineering students. This system is helpful for the personalization of the project-based
learning course and achieving ESD goals. The provision of quality education with a higher success
rate is among the primary goals of ESD [53]. Prediction of coding intricacy is a prime concern of
software engineering students. Cooperative learning can aid in dealing with the problem by learning
from peers and improvement of work behavior [54]. The proposed approach of predicting coding
intricacy level addresses an imperative problem of software engineering students regarding delayed
delivery of coding deliverables due to high coding intricacy. Taking time as a primary concern, coding
intricacy level was determined for the teams. Features aggregation was used to evaluate the coding
intricacy level of the teams as high or low. Teams facing a high level of coding intricacy during software
engineering projects were predicted using boosting of the RF model. The proposed model resulted in
generating the highest accuracy and f-score for predicting the teams facing high coding intricacy.

The contributions of this study can be summarized by answering the research questions raised in
Section 1.1 (Research Questions) of Section 1 (Introduction).

(1) Can we predict the coding intricacy level efficiently among software teams working on the same
software project in a term? Yes, through the proposed approach of boosting of an RF model,
coding intricacy levels of different teams working on the same project in a term can be predicted.
Results of the proposed approach verdict its efficiency by thoroughly comparing it with other
effective approaches of ML. Through the proposed strategy, 85.14% accuracy was achieved.

(2) Can cooperative learning and ESD goals be achieved by predicting the coding intricacy level
among teams? Yes, predictions about students can help as a second eye for the instructors to
perceive the apprehensions of the students. Predicting the coding intricacy level of software
engineering teams is an aid for assisting the instructors in determining the students’ concerns,
which otherwise could be very difficult. Student–instructor healthy discussions and support
sessions can help resolve the issues that are leading to high coding intricacy. Peer support and
guidance can help address issues of high intricacy level. Thus, the prediction of coding intricacy
levels is directly influencing the learning space. It would be a great source for producing a
cooperative learning environment [55]. This will eventually lead towards the accomplishment of
the goals of ESD by optimizing the educational environment.

To ensure cooperative learning in a software engineering team, there are dimensions required to
be encountered by the team such as positive interdependence, individual accountability, promotive
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interaction, appropriate use of social skills, and group processing [56]. The proposed approach of
prediction of coding intricacy is a mechanism leading towards the accomplishment of attributes of
cooperative learning. There exists a positive interdependence when the learning outcome of the team
members is directly related to the activities done by all the affiliates of the team. Software engineering
teams work with role assignments of team members. Therefore, trouble in the coding part can lead
to the disaster of the project. Predicting the coding intricacy lays the foundation for individual
accountability for ensuring cooperative learning. It is related to the communication between all the
team members. Communication among the team can help in resolving the apprehensions in coding.
Promotive interaction is part of software projects already. Teamwork is associated with the success
of the project. So all the members have to be responsible for their part of work to attain promotive
interactions for ensuring cooperative learning. Social skills play an important role in determining the
complications associated with the coding intricacy of the project. Operative communication, supporting
each other, and conflict resolution can be achieved by effective usage of social skills. This approach
will eventually aid in making the project successful. Group processing can help monitor the reasons
for coding intricacy in a team. This attribute determines what went well and what did not. It can be a
source of optimizing the work environment in a software team. Therefore, cooperative learning can be
achieved by predicting coding intricacy among the team.

Section 4 (Proposed Methodology) presented a thorough comparison of the results of the proposed
boosted RF (LogitBoost, AdaBoost) approach with the previous state of the art methods using different
metrics. The proposed approach was outperforming with the highest value of accuracy, precision,
recall, F-measure, kappa, and ROC. The proposed approach has the lowest RMSE value as compared
to other approaches.

Education is among the prime composites of sustainable development. ESD devised some goals for
its fulfillment in general education practices. Software engineering follows a project-based pedagogical
approach. Competences associated with ESD, such as systems thinking, interdisciplinary work,
anticipatory thinking, critical thinking and analysis, communication and use of media, strategic actions,
personal involvement, assessment and evaluation, and tolerance for ambiguity and uncertainty, provide
good coverage to project-based learning [57]. ESD is a learner-centered approach that considers the
learner’s perspective as prime [58]. This is intended for challenging learners to partake enthusiastically,
think critically, and imitate [59]. Critical thinking and active participation of team members for
resolution of concerns of coding intricacy are fulfilling the goals of ESD. Predictions, therefore, directly
encourage the achievement of the goals of ESD by looking into the future and making foundations for
decision making in favor of learners. Coding challenges are among the prime concerns of software
engineering students. Teamwork in the software engineering course project has a foundation for
cooperative learning as teams are representing groups. Cooperative learning can be strengthened
by the prediction of major complications in a project such as coding intricacy. Hence, the proposed
approach helps to promote cooperation and interaction among peers to ensure cooperative learning
alongside the achievement of ESD goals. The proposed approach is presenting a strategy for dealing
with the coding problems by early identification of teams for resolution of their issues. A smart
software engineering project environment to predict the high coding intricacy of the teams provides a
forum of co-operative learning, responsible learning, and sustainable education.

6. Conclusions and Future Work

The paper proposed a boosting-based approach of an RF classifier for predicting the coding
intricacy of software engineering teams. Features aggregation is used for developing the intricacy class
with labels high and low. It is significant to predict the teams expected to face the high intricacy level.
Coding intricacy is among the major issues faced by the students. Many tools for supporting coding
are designed to assist the students in learning programming. However, sometimes only minor issues
faced during coding can cause a delay in the delivery of the project. Early prediction of coding intricacy
can be a great source of transforming the traditional software project environment. Cooperative
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learning is ensured by fulfilling the prominent domains using the proposed approach. ESD goals can
be accomplished by resolving the problems of teams facing high coding intricacy through cooperative
learning and critical thinking. The cooperative learning environment with the aid of technology can
be the best revolution of the project-oriented academic environment. The proposed approach has its
direct way to the triumph of sustainable education. In the future, this work can be extended further
by the utilization of deep-learning models. Approaches of recommender systems can assist in the
evaluation of SETAP data for making useful recommendations that can aid in lowering the coding
intricacy level of the teams.
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